Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Sci Rep ; 13(1): 21781, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065965

RESUMO

Malignant pleural effusions (MPEs) can be utilized as liquid biopsy for phenotyping malignant cells and for precision immunotherapy, yet MPEs are inadequately studied at the single-cell proteomic level. Here we leverage mass cytometry to interrogate immune and epithelial cellular profiles of primary tumors and pleural effusions (PEs) from early and late-stage non-small cell lung cancer (NSCLC) patients, with the goal of assessing epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in patient specimens. By using the EMT-MET reference map PHENOSTAMP, we observe a variety of EMT states in cytokeratin positive (CK+) cells, and report for the first time MET-enriched CK+ cells in MPEs. We show that these states may be relevant to disease stage and therapy response. Furthermore, we found that the fraction of CD33+ myeloid cells in PEs was positively correlated to the fraction of CK+ cells. Longitudinal analysis of MPEs drawn 2 months apart from a patient undergoing therapy, revealed that CK+ cells acquired heterogeneous EMT features during treatment. We present this work as a feasibility study that justifies deeper characterization of EMT and MET states in malignant cells found in PEs as a promising clinical platform to better evaluate disease progression and treatment response at a personalized level.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Derrame Pleural , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteômica , Transição Epitelial-Mesenquimal/fisiologia , Derrame Pleural Maligno/tratamento farmacológico , Biópsia Líquida
2.
Nat Commun ; 14(1): 7211, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938561

RESUMO

Efficacy of cancer vaccines remains low and mechanistic understanding of antigen presenting cell function in cancer may improve vaccine design and outcomes. Here, we analyze the transcriptomic and immune-metabolic profiles of Dendritic Cells (DCs) from 35 subjects enrolled in a trial of DC vaccines in late-stage melanoma (NCT01622933). Multiple platforms identify metabolism as an important biomarker of DC function and patient overall survival (OS). We demonstrate multiple immune and metabolic gene expression pathway alterations, a functional decrease in OCR/OXPHOS and increase in ECAR/glycolysis in patient vaccines. To dissect molecular mechanisms, we utilize single cell SCENITH functional profiling and show patient clinical outcomes (OS) correlate with DC metabolic profile, and that metabolism is linked to immune phenotype. With single cell metabolic regulome profiling, we show that MCT1 (monocarboxylate transporter-1), a lactate transporter, is increased in patient DCs, as is glucose uptake and lactate secretion. Importantly, pre-vaccination circulating myeloid cells in patients used as precursors for DC vaccine generation are significantly skewed metabolically as are several DC subsets. Together, we demonstrate that the metabolic profile of DC is tightly associated with the immunostimulatory potential of DC vaccines from cancer patients. We link phenotypic and functional metabolic changes to immune signatures that correspond to suppressed DC differentiation.


Assuntos
Vacinas Anticâncer , Melanoma , Humanos , Melanoma/terapia , Metabolômica , Pesquisadores , Células Dendríticas
3.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693547

RESUMO

Hematopoietic stem and progenitor cell (HSPC) transplantation is an essential therapy for hematological conditions, but finer definitions of human HSPC subsets with associated function could enable better tuning of grafts and more routine, lower-risk application. To deeply phenotype HSPCs, following a screen of 328 antigens, we quantified 41 surface proteins and functional regulators on millions of CD34+ and CD34- cells, spanning four primary human hematopoietic tissues: bone marrow, mobilized peripheral blood, cord blood, and fetal liver. We propose more granular definitions of HSPC subsets and provide new, detailed differentiation trajectories of erythroid and myeloid lineages. These aspects of our revised human hematopoietic model were validated with corresponding epigenetic analysis and in vitro clonal differentiation assays. Overall, we demonstrate the utility of using molecular regulators as surrogates for cellular identity and functional potential, providing a framework for description, prospective isolation, and cross-tissue comparison of HSPCs in humans.

4.
Sci Rep ; 13(1): 13849, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620363

RESUMO

Comparing brain structure across species and regions enables key functional insights. Leveraging publicly available data from a novel mass cytometry-based method, synaptometry by time of flight (SynTOF), we applied an unsupervised machine learning approach to conduct a comparative study of presynapse molecular abundance across three species and three brain regions. We used neural networks and their attractive properties to model complex relationships among high dimensional data to develop a unified, unsupervised framework for comparing the profile of more than 4.5 million single presynapses among normal human, macaque, and mouse samples. An extensive validation showed the feasibility of performing cross-species comparison using SynTOF profiling. Integrative analysis of the abundance of 20 presynaptic proteins revealed near-complete separation between primates and mice involving synaptic pruning, cellular energy, lipid metabolism, and neurotransmission. In addition, our analysis revealed a strong overlap between the presynaptic composition of human and macaque in the cerebral cortex and neostriatum. Our unique approach illuminates species- and region-specific variation in presynapse molecular composition.


Assuntos
Encéfalo , Transmissão Sináptica , Humanos , Animais , Camundongos , Córtex Cerebral , Metabolismo dos Lipídeos , Macaca
5.
Cell Rep Med ; 4(8): 101147, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552988

RESUMO

Solid organ transplant remains a life-saving therapy for children with end-stage heart, lung, liver, or kidney disease; however, ∼33% of allograft recipients experience acute rejection within the first year after transplant. Our ability to detect early rejection is hampered by an incomplete understanding of the immune changes associated with allograft health, particularly in the pediatric population. We performed detailed, multilineage, single-cell analysis of the peripheral blood immune composition in pediatric solid organ transplant recipients, with high-dimensional mass cytometry. Supervised and unsupervised analysis methods to study cell-type proportions indicate that the allograft type strongly influences the post-transplant immune profile. Further, when organ-specific differences are considered, graft health is associated with changes in the proportion of distinct T cell subpopulations. Together, these data form the basis for mechanistic studies into the pathobiology of rejection and allow for the development of new immunosuppressive agents with greater specificity.


Assuntos
Nefropatias , Transplante de Rim , Transplante de Órgãos , Humanos , Criança , Transplante Homólogo , Imunidade
6.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645930

RESUMO

Aging of the hematopoietic system promotes various blood, immune and systemic disorders and is largely driven by hematopoietic stem cell (HSC) dysfunction ( 1 ). Autophagy is central for the benefits associated with activation of longevity signaling programs ( 2 ), and for HSC function and response to nutrient stress ( 3,4 ). With age, a subset of HSCs increases autophagy flux and preserves some regenerative capacity, while the rest fail to engage autophagy and become metabolically overactivated and dysfunctional ( 4 ). However, the signals that promote autophagy in old HSCs and the mechanisms responsible for the increased regenerative potential of autophagy-activated old HSCs remain unknown. Here, we demonstrate that autophagy activation is an adaptive survival response to chronic inflammation in the aging bone marrow (BM) niche ( 5 ). We find that inflammation impairs glucose metabolism and suppresses glycolysis in aged HSCs through Socs3-mediated impairment of AKT/FoxO-dependent signaling. In this context, we show that inflammation-mediated autophagy engagement preserves functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we demonstrate that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glucose uptake and glycolytic flux and significantly improves old HSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset old HSC glycolytic and regenerative capacity. One-Sentence Summary: Autophagy compensates for chronic inflammation-induced metabolic deregulation in old HSCs, and its transient modulation can reset old HSC glycolytic and regenerative capacity.

7.
Res Sq ; 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37398389

RESUMO

Microglia are implicated in aging, neurodegeneration, and Alzheimer's disease (AD). Traditional, low-plex, imaging methods fall short of capturing in situ cellular states and interactions in the human brain. We utilized Multiplexed Ion Beam Imaging (MIBI) and data-driven analysis to spatially map proteomic cellular states and niches in healthy human brain, identifying a spectrum of microglial profiles, called the microglial state continuum (MSC). The MSC ranged from senescent-like to active proteomic states that were skewed across large brain regions and compartmentalized locally according to their immediate microenvironment. While more active microglial states were proximal to amyloid plaques, globally, microglia significantly shifted towards a, presumably, dysfunctional low MSC in the AD hippocampus, as confirmed in an independent cohort (n=26). This provides an in situ single cell framework for mapping human microglial states along a continuous, shifting existence that is differentially enriched between healthy brain regions and disease, reinforcing differential microglial functions overall.

8.
Nat Commun ; 14(1): 4013, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419873

RESUMO

Cellular organization and functions encompass multiple scales in vivo. Emerging high-plex imaging technologies are limited in resolving subcellular biomolecular features. Expansion Microscopy (ExM) and related techniques physically expand samples for enhanced spatial resolution, but are challenging to be combined with high-plex imaging technologies to enable integrative multiscaled tissue biology insights. Here, we introduce Expand and comPRESS hydrOgels (ExPRESSO), an ExM framework that allows high-plex protein staining, physical expansion, and removal of water, while retaining the lateral tissue expansion. We demonstrate ExPRESSO imaging of archival clinical tissue samples on Multiplexed Ion Beam Imaging and Imaging Mass Cytometry platforms, with detection capabilities of > 40 markers. Application of ExPRESSO on archival human lymphoid and brain tissues resolved tissue architecture at the subcellular level, particularly that of the blood-brain barrier. ExPRESSO hence provides a platform for extending the analysis compatibility of hydrogel-expanded biospecimens to mass spectrometry, with minimal modifications to protocols and instrumentation.


Assuntos
Microscopia , Proteínas , Humanos , Vácuo , Microscopia/métodos , Hidrogéis/química
9.
Biomacromolecules ; 24(7): 3105-3114, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352475

RESUMO

High-dimensional single-cell mass spectrometric imaging techniques such as multiplexed ion beam imaging by time-of-flight mass spectrometry (MIBI-TOF), imaging mass cytometry (IMC), and flow cytometry-based CyTOF utilize antibodies conjugated to linear metal-chelating polymers. Here, we report on the synthesis and characterization of a dendrimer-based polymer and its utilization in tissue imaging using MIBI-TOF. We compared the staining performance in FFPE tissue of antibodies for lineage-specific immune proteins (CD20, CD3, CD45, FoxP3) that were conjugated with dendrimer or linear polymer. Staining of serial tissue sections with dendron-conjugated and linear-polymer-conjugated antibodies revealed comparable avidities of dendrons and linear polymers with log2 (ratio of mean positive pixel intensity of staining for linear polymers to dendrons) within the range ±0.25. Interestingly, dendron-conjugated antibodies were observed to have some advantages over linear polymer-conjugated antibodies. For example, tissue staining of a nuclear protein, FoxP3 with dendron-conjugated antibodies showed notably less background staining than that of linear-polymer-conjugated antibodies. Additionally, dendron-conjugated antibodies did not exhibit off-target cytosolic binding in neural tissue typically observed when using linear polymer conjugates. Taken together, this work provides a versatile framework for using third-generation dendron-conjugated antibodies with improved staining over conventional linear polymers.


Assuntos
Dendrímeros , Polímeros , Polímeros/química , Antracenos , Anticorpos/química , Fatores de Transcrição Forkhead
10.
Nat Commun ; 14(1): 2935, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217509

RESUMO

Resistance to glucocorticoids (GC) is associated with an increased risk of relapse in B-cell progenitor acute lymphoblastic leukemia (BCP-ALL). Performing transcriptomic and single-cell proteomic studies in healthy B-cell progenitors, we herein identify coordination between the glucocorticoid receptor pathway with B-cell developmental pathways. Healthy pro-B cells most highly express the glucocorticoid receptor, and this developmental expression is conserved in primary BCP-ALL cells from patients at diagnosis and relapse. In-vitro and in vivo glucocorticoid treatment of primary BCP-ALL cells demonstrate that the interplay between B-cell development and the glucocorticoid pathways is crucial for GC resistance in leukemic cells. Gene set enrichment analysis in BCP-ALL cell lines surviving GC treatment show enrichment of B cell receptor signaling pathways. In addition, primary BCP-ALL cells surviving GC treatment in vitro and in vivo demonstrate a late pre-B cell phenotype with activation of PI3K/mTOR and CREB signaling. Dasatinib, a multi-kinase inhibitor, most effectively targets this active signaling in GC-resistant cells, and when combined with glucocorticoids, results in increased cell death in vitro and decreased leukemic burden and prolonged survival in an in vivo xenograft model. Targeting the active signaling through the addition of dasatinib may represent a therapeutic approach to overcome GC resistance in BCP-ALL.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Receptores de Glucocorticoides/genética , Apoptose , Proteômica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Recidiva , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
11.
Curr Opin Immunol ; 82: 102323, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028221

RESUMO

Single-cell technologies have revealed the extensive heterogeneity and complexity of the immune system. Systems biology approaches in immunology have taken advantage of the high-parameter, high-throughput data and analyzed immune cell types in a 'bottom-up' data-driven method. This approach has discovered previously unrecognized cell types and functions. Especially for human immunology, in which experimental manipulations are challenging, systems approach has become a successful means to investigate physiologically relevant contexts. This review focuses on the recent findings in lymphocyte biology, from their development, differentiation into subsets, and heterogeneity in their functions, enabled by these systems approaches. Furthermore, we review examples of the application of findings from systems approach studies and discuss how now to leave the rich dataset in the curse of high dimensionality.


Assuntos
Sistema Imunitário , Biologia de Sistemas , Humanos , Subpopulações de Linfócitos , Diferenciação Celular , Contagem de Linfócitos
12.
Sci Adv ; 9(12): eade7702, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961888

RESUMO

Approximately 5 million dengue virus-infected patients progress to a potentially life-threatening severe dengue (SD) infection annually. To identify the immune features and temporal dynamics underlying SD progression, we performed deep immune profiling by mass cytometry of PBMCs collected longitudinally from SD progressors (SDp) and uncomplicated dengue (D) patients. While D is characterized by early activation of innate immune responses, in SDp there is rapid expansion and activation of IgG-secreting plasma cells and memory and regulatory T cells. Concurrently, SDp, particularly children, demonstrate increased proinflammatory NK cells, inadequate expansion of CD16+ monocytes, and high expression of the FcγR CD64 on myeloid cells, yet a signature of diminished antigen presentation. Syndrome-specific determinants include suppressed dendritic cell abundance in shock/hemorrhage versus enriched plasma cell expansion in organ impairment. This study reveals uncoordinated immune responses in SDp and provides insights into SD pathogenesis in humans with potential implications for prediction and treatment.


Assuntos
Vírus da Dengue , Dengue , Dengue Grave , Criança , Humanos , Cinética , Proteômica , Imunidade Inata
13.
Sci Immunol ; 8(81): eade3525, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000856

RESUMO

The response of gamma delta (γδ) T cells in the acute versus chronic phases of the same infection is unclear. How γδ T cells function in acute Mycobacterium tuberculosis (Mtb) infection is well characterized, but their response during persistent Mtb infection is not well understood, even though most infections with Mtb manifest as a chronic, clinically asymptomatic state. Here, we analyze peripheral blood γδ T cells from a South African adolescent cohort and show that a unique CD8+ γδ T cell subset with features of "memory inflation" expands in chronic Mtb infection. These cells are hyporesponsive to T cell receptor (TCR)-mediated signaling but, like NK cells, can mount robust CD16-mediated cytotoxic responses. These CD8+ γδ T cells comprise a highly focused TCR repertoire, with clonotypes that are Mycobacterium specific but not phosphoantigen reactive. Using multiparametric single-cell pseudo-time trajectory analysis, we identified the differentiation paths that these CD8+ γδ T cells follow to develop into effectors in this infection state. Last, we found that circulating CD8+ γδ T cells also expand in other chronic inflammatory conditions, including cardiovascular disease and cancer, suggesting that persistent antigenic exposure may drive similar γδ T cell effector programs and differentiation fates.


Assuntos
Linfócitos Intraepiteliais , Mycobacterium tuberculosis , Tuberculose , Humanos , Adolescente , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T CD8-Positivos
15.
Cancer Res ; 83(9): 1543-1557, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36847613

RESUMO

α-Fetoprotein (AFP) is expressed by stem-like and poor outcome hepatocellular cancer tumors and is a clinical tumor biomarker. AFP has been demonstrated to inhibit dendritic cell (DC) differentiation and maturation and to block oxidative phosphorylation. To identify the critical metabolic pathways leading to human DC functional suppression, here, we used two recently described single-cell profiling methods, scMEP (single-cell metabolic profiling) and SCENITH (single-cell energetic metabolism by profiling translation inhibition). Glycolytic capacity and glucose dependence of DCs were significantly increased by tumor-derived, but not normal cord blood-derived, AFP, leading to increased glucose uptake and lactate secretion. Key molecules in the electron transport chain in particular were regulated by tumor-derived AFP. These metabolic changes occurred at mRNA and protein levels, with negative impact on DC stimulatory capacity. Tumor-derived AFP bound significantly more polyunsaturated fatty acids (PUFA) than cord blood-derived AFP. PUFAs bound to AFP increased metabolic skewing and promoted DC functional suppression. PUFAs inhibited DC differentiation in vitro, and ω-6 PUFAs conferred potent immunoregulation when bound to tumor-derived AFP. Together, these findings provide mechanistic insights into how AFP antagonizes the innate immune response to limit antitumor immunity. SIGNIFICANCE: α-Fetoprotein (AFP) is a secreted tumor protein and biomarker with impact on immunity. Fatty acid-bound AFP promotes immune suppression by skewing human dendritic cell metabolism toward glycolysis and reduced immune stimulation.


Assuntos
Neoplasias Hepáticas , alfa-Fetoproteínas , Humanos , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , Neoplasias Hepáticas/patologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Biomarcadores/metabolismo , Células Dendríticas
16.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187636

RESUMO

Exosomes are proposed to be important in the pathogenesis of prevalent neurodegenerative diseases. We report the first application of solid-state technology to perform multiplex analysis of single exosomes in human cerebrospinal fluid (CSF) obtained from the lumbar sac of people diagnosed with Alzheimer's disease dementia (ADD, n=30) or Parkinson's disease dementia (PDD, n=30), as well as age-matched health controls (HCN, n=30). Single events were captured with mouse monoclonal antibodies to one of three different tetraspanins (CD9, CD63, or CD81) or with mouse (M) IgG control, and then probed with fluorescently labeled antibodies to prion protein (PrP) or CD47 to mark neuronal or presynaptic origin, as well as ADD- and PDD-related proteins: amyloid beta (Aß), tau, α-synuclein, and Apolipoprotein (Apo) E. Data were collected only from captured events that were within the size range of 50 to 200 nm. Exosomes were present at approximately 100 billion per mL human CSF and were similarly abundant for CD9+ and CD81+ events, but CD63+ were only 22% to 25% of CD9+ (P<0.0001) or CD81+ (P<0.0001) events. Approximately 24% of CSF exosomes were PrP+, while only 2% were CD47+. The vast majority of exosomes were surface ApoE+, and the number of PrP-ApoE+ (P<0.001) and PrP+ApoE+ (P<0.01) exosomes were significantly reduced in ADD vs. HCN for CD9+ events only. Aß, tau, and α-synuclein were not detected on the exosome surface or in permeabilized cargo. These data provide new insights into single exosome molecular features and highlight reduction in the CSF concentration of ApoE+ exosomes in patients with ADD.

17.
Cell Rep ; 41(7): 111651, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384130

RESUMO

The immune system and placenta have a dynamic relationship across gestation to accommodate fetal growth and development. High-resolution characterization of this maternal-fetal interface is necessary to better understand the immunology of pregnancy and its complications. We developed a single-cell framework to simultaneously immuno-phenotype circulating, endovascular, and tissue-resident cells at the maternal-fetal interface throughout gestation, discriminating maternal and fetal contributions. Our data reveal distinct immune profiles across the endovascular and tissue compartments with tractable dynamics throughout gestation that respond to a systemic immune challenge in a gestationally dependent manner. We uncover a significant role for the innate immune system where phagocytes and neutrophils drive temporal organization of the placenta through remarkably diverse populations, including PD-L1+ subsets having compartmental and early gestational bias. Our approach and accompanying datasets provide a resource for additional investigations into gestational immunology and evoke a more significant role for the innate immune system in establishing the microenvironment of early pregnancy.


Assuntos
Feto , Placenta , Gravidez , Feminino , Humanos
18.
Acta Neuropathol Commun ; 10(1): 158, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333818

RESUMO

Neurodegenerative disorders are characterized by phenotypic changes and hallmark proteopathies. Quantifying these in archival human brain tissues remains indispensable for validating animal models and understanding disease mechanisms. We present a framework for nanometer-scale, spatial proteomics with multiplex ion beam imaging (MIBI) for capturing neuropathological features. MIBI facilitated simultaneous, quantitative imaging of 36 proteins on archival human hippocampus from individuals spanning cognitively normal to dementia. Customized analysis strategies identified cell types and proteopathies in the hippocampus across stages of Alzheimer's disease (AD) neuropathologic change. We show microglia-pathologic tau interactions in hippocampal CA1 subfield in AD dementia. Data driven, sample independent creation of spatial proteomic regions identified persistent neurons in pathologic tau neighborhoods expressing mitochondrial protein MFN2, regardless of cognitive status, suggesting a survival advantage. Our study revealed unique insights from multiplexed imaging and data-driven approaches for neuropathologic analysis and serves broadly as a methodology for spatial proteomic analysis of archival human neuropathology. TEASER: Multiplex Ion beam Imaging enables deep spatial phenotyping of human neuropathology-associated cellular and disease features.


Assuntos
Doença de Alzheimer , Proteômica , Animais , Humanos , Neuropatologia , Doença de Alzheimer/patologia , Hipocampo/patologia , Microglia/patologia , Proteínas tau/metabolismo
19.
Nat Commun ; 13(1): 5184, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056019

RESUMO

Cellular metabolism underpins immune cell functionality, yet our understanding of metabolic influences in human dendritic cell biology and their ability to orchestrate immune responses is poorly developed. Here, we map single-cell metabolic states and immune profiles of inflammatory and tolerogenic monocytic dendritic cells using recently developed multiparametric approaches. Single-cell metabolic pathway activation scores reveal simultaneous engagement of multiple metabolic pathways in distinct monocytic dendritic cell differentiation stages. GM-CSF/IL4-induce rapid reprogramming of glycolytic monocytes and transient co-activation of mitochondrial pathways followed by TLR4-dependent maturation of dendritic cells. Skewing of the mTOR:AMPK phosphorylation balance and upregulation of OXPHOS, glycolytic and fatty acid oxidation metabolism underpin metabolic hyperactivity and an immunosuppressive phenotype of tolerogenic dendritic cells, which exhibit maturation-resistance and a de-differentiated immune phenotype marked by unique immunoregulatory receptor signatures. This single-cell dataset provides important insights into metabolic pathways impacting the immune profiles of human dendritic cells.


Assuntos
Células Dendríticas , Monócitos , Diferenciação Celular , Glicólise , Humanos , Monócitos/metabolismo , Fosforilação Oxidativa
20.
Nat Med ; 28(9): 1860-1871, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097223

RESUMO

Approximately 60% of patients with large B cell lymphoma treated with chimeric antigen receptor (CAR) T cell therapies targeting CD19 experience disease progression, and neurotoxicity remains a challenge. Biomarkers associated with resistance and toxicity are limited. In this study, single-cell proteomic profiling of circulating CAR T cells in 32 patients treated with CD19-CAR identified that CD4+Helios+ CAR T cells on day 7 after infusion are associated with progressive disease and less severe neurotoxicity. Deep profiling demonstrated that this population is non-clonal and manifests hallmark features of T regulatory (TReg) cells. Validation cohort analysis upheld the link between higher CAR TReg cells with clinical progression and less severe neurotoxicity. A model combining expansion of this subset with lactate dehydrogenase levels, as a surrogate for tumor burden, was superior for predicting durable clinical response compared to models relying on each feature alone. These data credential CAR TReg cell expansion as a novel biomarker of response and toxicity after CAR T cell therapy and raise the prospect that this subset may regulate CAR T cell responses in humans.


Assuntos
Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Antígenos CD19 , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Lactato Desidrogenases , Síndromes Neurotóxicas/etiologia , Proteômica , Receptores de Antígenos de Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA